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Abstract
Synucleinopathies are a group of clinically and neuropathologically distinct protein misfolding diseases caused by unique 
α-synuclein conformations, or strains. While multiple atomic resolution cryo-electron microscopy structures of α-synuclein 
fibrils are now deposited in Protein Data Bank, significant gaps in the biological consequences arising from each conforma-
tion have yet to be unraveled. Mutations in the α-synuclein gene (SNCA), cofactors, and the solvation environment contribute 
to the formation and maintenance of each disease-causing strain. This review highlights the impact of each of these factors 
on α-synuclein misfolding and discusses the implications of the resulting structural variability on therapeutic development.
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Introduction

A-synuclein is a 140-amino acid protein expressed predomi-
nantly in the nucleus and presynaptic terminals of neurons 
throughout the central nervous system with little to no 
expression in oligodendrocytes [5, 22, 72]. While its exact 
function in neurons is uncertain, data suggest α-synuclein 
plays a role in regulating synaptic vesicle exocytosis and 
endocytosis, neurotransmitter release, and SNARE complex 
formation [17, 31, 63, 75, 103, 104]. Burré et al. reported 
that α-synuclein interacts directly with synaptobrevin-2/
VAMP2 within the SNARE complex, promoting its assem-
bly by binding to and clustering synaptic vesicles, as well 
as facilitating their subsequent fusion to the presynaptic 
membrane [17]. Similarly, studies evaluating α-synuclein 
expression levels suggest it is involved in regulating exo-
cytotic events in neurons [63, 75]. Structural studies indi-
cate that the N-terminal tail of α-synuclein binds to acidic 
lipids, allowing for the formation of two α-helices joined 
by a linker, which aids its role as a chaperone for vesicle 
docking [18, 19, 26, 28, 47]. However, because α-synuclein 

is an intrinsically disordered protein, it can adopt a vari-
ety of conformations when not membrane-bound, includ-
ing β-sheet-rich structures that initiate a protein misfolding 
cascade. The ability of α-synuclein to self-template misfold-
ing, also known as the prion mechanism, underlies a group 
of neurodegenerative disorders termed synucleinopathies.

Synucleinopathies are movement disorders that vary both 
in clinical presentation and neuropathology. As a result, 
they are often subcategorized into two main groups. In the 
first, α-synuclein accumulates into Lewy bodies (LBs) and 
Lewy neurites (LNs) in neurons in Parkinson’s disease (PD), 
dementia with Lewy bodies (DLB), and Parkinson’s disease 
with dementia (PDD) patients [30, 94]. As a group, Lewy 
body disease (LBD) patients are typically diagnosed in their 
60 s or at a later age and live up to two decades with sup-
portive care [4]. PD is characterized by a resting tremor, 
gait abnormalities, and muscle stiffness [79]. In both PDD 
and DLB, parkinsonism is accompanied by dementia, but 
diagnosis depends on the timing of dementia onset relative 
to motor symptoms. In PDD patients, dementia develops 
after motor impairment, while dementia onset precedes the 
motor signs in DLB patients. Consistent with this variation 
in symptoms, LBD patients exhibit differences in LB and 
LN distribution; PD patients typically show LB distribution 
throughout the brainstem, substantia nigra, and basal gan-
glia, whereas cortical LBs are seen in PDD and DLB patients 
[13, 68]. In the second category of synucleinopathies, mul-
tiple system atrophy (MSA) is characterized by α-synuclein 
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accumulating into glial cytoplasmic inclusions (GCIs) in 
oligodendrocytes and, to a lesser extent, neuronal cytoplas-
mic inclusions in neurons [78]. MSA patients are typically 
diagnosed in their 50–60 s and survive about 6–10 years 
following the onset of symptoms, which include cerebellar 
ataxia and idiopathic orthostatic hypotension [38–40]. MSA 
can be further subdivided based on the predominant clinical 
signs. In the cerebellar (MSA-C) subtype, patients develop 
tremors, oculomotor dysfunction, and ataxia, whereas in the 
parkinsonian (MSA-P) subtype, patients develop rigidity 
and nystagmus [40]. Notably, these differences in present-
ing symptoms coincide with differences in GCI distribution 
between the two subtypes [52].

While both LBDs and MSA are defined by α-synuclein 
pathology, to date, point mutations in the α-synuclein gene, 
SNCA, are only linked to LBD patients. The first mutation 
discovered in SNCA was the A53T mutation in the Con-
tursi kindred [81]. This was shortly followed by the A30P 
and E46K mutations [51, 112]. More recently, known 
LBD-causing point mutations expanded to include A30G, 
H50Q, G51D, A53E, A53V, and T72M [3, 29, 55, 62, 80, 
111]. Notably, two of these mutations, G51D and A53E, 
were reported in patients with neuropathological inclusions 
reminiscent of GCIs in addition to classical LB pathology 
[48, 80].

Applying the strain hypothesis to synucleinopathies

The ability of α-synuclein to give rise to several distinct 
neurological disorders is reminiscent of the finding that mis-
folding of the prion protein (PrP) is the underlying cause 
of a variety of prion diseases. While this finding was ini-
tially perplexing, the ability of an agent lacking a nucleic 
acid sequence to encode disease-specific information was 
explained by the strain hypothesis. The strain hypothesis 
proposes that the misfolded protein conformation deter-
mines which disease a patient will develop [8, 98]. In prion 
diseases, the kinetics of PrP mis-folding into each disease-
causing conformation typically translates into strain-specific 
differences in disease onset and length of disease. Moreover, 
substantial data indicate that prion strains give rise to distinct 
neuropathological profiles in the brain (reviewed in [8, 14]). 
For example, while some PrP prion strains target the cerebel-
lum, others have a larger impact on the cerebral cortex [16, 
32]. This strain-specific selective vulnerability manifests as 
unique clinical presentations in affected individuals. As a 
result, each prion disease is defined and diagnosed by both 
distinct clinical and neuropathological features. Consistent 
with these observations, differences in the type and distri-
bution of α-synuclein inclusions, as well as the associated 
clinical signs, strongly argue that discrete α-synuclein strains 
give rise to each synucleinopathy (reviewed in [45]). This 
hypothesis is bolstered by recent cryo-electron microscopy 

(cryo-EM) data from Schweighauser et al., while the authors 
resolved the structures of α-synuclein isolated from MSA 
patient samples, the lack of twist in filaments isolated from 
DLB patient samples impeded determination of the mis-
folded structure [92]. We discuss the biochemical, cellu-
lar, and animal data that point to the presence of distinct 
α-synuclein strains in LBD and MSA patient samples in a 
previous review article [45].

Over the last 6 years, several structures of misfolded 
α-synuclein have been resolved using a variety of fibril 
sources and imaging methods. In most cases, the combi-
nation of using recombinant protein, rather than patient-
derived fibrils, along with the lack of a thorough biochemi-
cal and biological analysis accompanying each reported 
fibril structure, limits the conclusions we can draw about the 
strain-specific behavior associated with each conformation. 
This, in turn, constrains our ability as a field to determine 
what specific structural differences are responsible for dictat-
ing α-synuclein strain biology. For example, in this review, 
we offer a comprehensive discussion of the α-synuclein 
cryo-EM structures reported to date, with an emphasis on 
the effect of SNCA point mutations on α-synuclein confor-
mation and misfolding kinetics. However, we are limited 
in our ability to pair these analyses with experimental or 
clinical data given the absence of robust biological profiles 
for each reported structure, as well as the lack of structures 
reported from synucleinopathy patients harboring SNCA 
mutations. This review also focuses on the clinical implica-
tions that may arise if we fail to prioritize the use of disease-
relevant conformations to guide diagnostic and therapeutic 
development.

Structural diversity among α‑synuclein 
fibrils

Unique sequence features contribute to amyloid 
structure

The amino acid sequence of α-synuclein is character-
ized by three general interaction domains: the N-termi-
nal region (residues 1–60), the non-amyloid-β compo-
nent (NAC; residues 61–96), and the C-terminal domain 
(residues 97–140; Fig. 1a). In addition, the portion of 
the N-terminal domain immediately preceding the NAC 
domain is commonly referred to as the preNAC region. 
While there is some variability in the amino acid residues 
that define the preNAC region, it is typically reported to 
include residues 47–54 at a minimum. The N-terminal 
and NAC domains contain seven imperfect repeats of the 
consensus sequence KTKEGV (residues 7–87), forming 
the amphipathic α-helices of the lipid-binding domain in 
which all known familial LBD mutations are located [7, 
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21, 101]. The extension of the imperfect repeats into the 
hydrophobic NAC region is necessary for fibril formation, 
enabling the tight packing seen in the amyloid state [37]. 
In comparison, the C-terminus is enriched with acidic 
residues and prolines that yield a disordered and flexible 
domain. These sequence elements are easily observed in 
the nuclear magnetic resonance (NMR) structure described 
by Ulmer et al. in 2005 (Fig. 1b) [102]. Notably, the dis-
tinct charge differences between the N- and C-terminal 
regions of α-synuclein enable the structure to be highly 
dependent on the protein’s environment [1, 10, 84, 109]. 
Finally, α-synuclein contains 18 glycine residues, amount-
ing to ~ 13% of the total amino acid sequence (Table 1). 
The side chain, or R group, of a given amino acid intro-
duces steric hindrance around the  Cα carbon, which ulti-
mately dictates how much strain each bond can tolerate 
and the conformations each residue can adopt. Glycine, 
with a hydrogen side chain, exhibits minimal conforma-
tional restriction on protein folding. The slight increase 
in glycine content in the α-synuclein sequence compared 
to other non-amyloid forming SNARE complex proteins 
(Table 1), along with the presence of the imperfect repeats, 
is thought to increase the flexibility of the protein, as well 

as contribute to its intrinsically disordered nature. As 
a consequence of this increase in conformational flex-
ibility, the energy required for α-synuclein to adopt an 
amyloid conformation is lowered, increasing the capac-
ity of α-synuclein to adopt a large number of amyloid 
conformations. 

Fig. 1  The N-terminal NAC domain contributes to the α-synuclein 
fibril core. a A-synuclein is a 140-amino acid protein containing three 
general domains: the N-terminal domain (residues 1–61; blue), the 
NAC domain (residues 61–97; purple), and the C-terminal domain 
(residues 97–140; green). The majority of the reported familial Par-
kinson’s disease mutations in α-synuclein, indicated with arrows, are 
located in the N-terminal domain. b Micelle-bound α-synuclein con-

sists of two α-helices connected via a linker sequence, and a disor-
dered C-terminal domain (PDB ID 1XQ8, [102]). c Solid-state NMR 
structure of WT recombinant full-length α-synuclein revealed a fibril 
core containing a Greek key motif that is stabilized by a salt bridge 
between residues E46 and K80 (dotted red  line). This structured 
region of the protein fibril is flanked by an unstructured “fuzzy coat” 
region on the N- and C-termini (PDB ID 2N0A, [100])

Table 1  Glycine content of SNARE complex proteins

Protein Number 
of glycines

Sequence length Percent 
glycines

α-synuclein 18 140 12.9
VAMP family 6.7 130.1 5.3
Synaptobrevin-2 7 121 5.8
Syntaxin-1B 9 288 3.1
SNAP-25 14 206 6.8
Synaptotagmins 1–17 29.9 467.2 6.4
Complexins 1–4 11.3 146.5 7.7
Synaptophysin 39 313 12.5
Synapsins 1–3 50.3 622.3 7.9
β-synuclein 13 134 9.7
γ-synuclein 10 127 7.9
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Advances in the atomic resolution of misfolded 
α‑synuclein conformations

Several intrinsic and extrinsic factors influence the shape, 
pitch, twist, protofilament number, filament diameter, 
and inter- and intramolecular interactions to determine 
α-synuclein fibril morphology [42]. Reflective of these 

differences, a variety of conformations have been reported 
using multiple sources of recombinant α-synuclein, includ-
ing wild-type (WT), mutant, post-translationally modified, 
and/or truncated protein (Table 2). In addition to differ-
ences in the starting protein monomer, fibrils have been 
generated using a variety of buffers and other experimental 
conditions, including pH and sonication (Table 3). In the 

Table 2  Conserved structural elements in α-synuclein fibrils

a PDB protein data bank ID number
b Relative to WT protein
c n.d. not determined
d Fibrils isolated from MSA patient samples contain two different protofibril structures (denoted A and B)

PDBa Length Mutation PTMs Structural elements

Templating region E46-K80
salt bridge

Interface Cofactor Kineticsb Ref

2N0A 1–140 None None A29-K97 Present Single protofilament No n.d.c [100]
6XYPd 1–140 None Ubiquitination, acety-

lation, phosphoryla-
tion

A: G14-F94
B: G36-Q99

A: Present
B: Present

A: Q24-V55
B: L38-T64

Yes n.d [92]

6XYOd 1–140 None Ubiquitination, acety-
lation, phosphoryla-
tion

A: G14-F94
B: K21-Q99

A: Present
B: Present

A: Q24-E57
B: E35-T64

Yes n.d [92]

6XYQd 1–140 None Ubiquitination, acety-
lation, phosphoryla-
tion

A: G14-F94
B: G36-Q99

A: Present
B: Present

A: Q24-V55
B: L38-T64

Yes n.d [92]

6CU8 1–140 None None K43-E83 Absent V66-A78 No n.d [58]
6CU7 1–140 None None L38-K97 Present H50-E57 No n.d [58]
6SST 1–140 None None G14-G25 & G36-K96 Absent K45 and E46 No n.d [42]
6RTB 1–140 None None S9-Q24,

E35-A56, & Q62-G93
Absent K45 and E46 No n.d [42]

6SSX 1–140 None None G14-G25 & G36-K96 Absent K45 and E57 No n.d [42]
6RT0 1–140 None None G14-G25 & G36-K97 Absent K45 and E57 No n.d [42]
6L1T 1–140 None Phosphorylation 

Tyr39
M1-L100 Absent E57-K58 No n.d [114]

6L1U 1–140 None Phosphorylation 
Tyr39

M1-L100 Absent A & B: E57-K58
(both)
B & C: E46 (B) and 

E57-K58 (C)

No n.d [114]

6A6B 1–140 None N-terminal acetylation V37-Q99 Present H50-E57 No n.d [61]
6OSJ 1–140 None N-terminal acetylation V37-K97 Present H50-E57 No n.d [76]
6OSL 1–122 None N-terminal acetylation Y39-K97 Present H50-E57 No n.d [76]
6OSM 1–103 None N-terminal acetylation Y39-V95 Present H50-E57 No n.d [76]
6H6B 1–121 None C-terminal truncated

(1–121)
L38-V95 Present H50-E57 No n.d [43]

6FLT 1–121 None C-terminal truncated
(1–121)

L38-V95 Present H50-E57 No n.d [43]

6UFR 1–140 E46K None G36-D98 Absent K45-E57 Solvent filled Increase [12]
6L4S 1–140 E46K N-terminal acetylation K45-Q99 Absent V74-Q79 No Increase [113]
6PES 1–140 H50Q None A: G36-Q99

B: T44-K97
A: Present
B: Present

K58-E61 No Increase [11]

6PEO 1–140 H50Q None G36-Q99 Present Single filament No Increase [11]
7E0F 1–140 G51D N-terminal acetylation H50-D98 Absent V74-Q79 No Decrease [97]
6LRQ 1–140 A53T N-terminal acetylation V37-Q99 Present T59-K60 No Increase [96]
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Table 3  α-synuclein fibril preparation conditions

PDBa Protein concentration Buffer conditions pH Tem-
perature 
(°C)

Shaking & sonication conditions Ref

2N0A 15 mg/mL 50 mM NaPi, 0.1 mM EDTA, 0.02% 
sodium azide (w/v)

7.4 37 200 rpm,
3 weeks

[100]

6CU8 300 µM 15 mM tetrabutylphosphonium 
bromide

Not specified RTb Not specified [58]

6CU7 300 µM 15 mM tetrabutylphosphonium 
bromide

Not specified RT Not specified [58]

6SST 700 µM 50 mM Tris HCl, 150 mM KCl 7.5 37 600 rpm (Eppendorf ThermoMixer),
1 week

[42]

6RTB 700 µM 50 mM Tris HCl, 150 mM KCl 7.5 37 600 rpm (Eppendorf ThermoMixer),
1 week

[42]

6SSX 700 µM 50 mM Tris HCl, 150 mM KCl 7.5 37 600 rpm (Eppendorf ThermoMixer),
1 week

[42]

6RT0 700 µM 50 mM Tris HCl, 150 mM KCl 7.5 37 600 rpm (Eppendorf ThermoMixer),
1 week

[42]

6L1T 100 µM 50 mM Tris 150 mM KCl, 0.05% 
 NaN3

7.5 37 900 rpm (Eppendorf ThermoMixer),
1 week;
30 s 20% power sonicated (1 s on/1 s 

off; JY92-IIN sonicator) on ice, 
mixed sonicated fibrils (0.5%, vol/
vol) with monomer & repeated shak-
ing incubation,

2 weeks

[114]

6L1U 100 µM 50 mM Tris, 150 mM KCl, 0.05% 
 NaN3

7.5 37 900 rpm (Eppendorf ThermoMixer),
1 week;
30 s 20% power sonicated (1 s on/1 s 

off; JY92-IIN sonicator) on ice, 
mixed sonicated fibrils (0.5%, vol/
vol) with monomer & repeated shak-
ing incubation,

2 weeks

[114]

6A6B 500 µM 50 mM Tris, 150 mM KCl,
0.05%  NaN3

7.5 37 900 rpm (Eppendorf ThermoMixer),
3 days;
30 s sonication of diluted 25 µM 

sample (1 s on/1 s off) on ice, mixed 
sonicated fibrils (0.5%, vol/vol) 
to 25 µM acetylated monomer & 
repeated shaking incubation,

3 days

[61]

6OSJ 100–300 µM 10 mM NaPi, 140 mM NaCl 7.4 37 600 rpm (VWR Mini-Micro 980,140 
shaker), 4–5 days

[76]

6OSL 100–300 µM 10 mM NaPi, 140 mM NaCl 7.4 37 600 rpm (VWR Mini-Micro 980,140 
shaker), 4–5 days

[76]

6OSM 100–300 µM 10 mM NaPi, 140 mM NaCl 7.4 37 600 rpm (VWR Mini-Micro 980,140 
shaker), 4–5 days

[76]

6H6B 5 mg/mL DPBS, Gibco; 2.66 mM KCl, 
1.47 mM  KH2PO4, 137.93 mM 
NaCl, 8.06 mM  Na2HPO4-7H2O

7.0–7.3 37 1000 rpm (Eppendorf orbital mixer),
5 days;
5 min sonication (Branson 2510 water 

bath)

[43]

6FLT 5 mg/mL DPBS, Gibco; 2.66 mM KCl, 
1.47 mM  KH2PO4, 137.93 mM 
NaCl, 8.06 mM  Na2HPO4-7H2O

7.0–7.3 37 1000 rpm (Eppendorf orbital mixer), 
5 days, 5 min sonication (Branson 
2510 water bath)

[43]

6UFR 300 µM 15 mM tetrabutylphosphonium 
bromide

Not specified 37 Shaking speed not specified;
2 weeks

[12]
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following sections, we will discuss the effect that each of 
these factors has on protein structure. An important caveat 
to note, however, is that it remains unknown how similar 
mutations, post-translational modifications, or truncations 
impact the misfolded protein conformation in patients with 
synucleinopathies. 

The first structural insights into α-synuclein misfolding 
came from Rodriguez et al. in 2015. Using micro-electron 
diffraction to resolve the structure of the 11-residue NACore 
segment of α-synuclein preformed fibrils (PFFs; residues 
68–78), the authors reported that the short segments form 
steric zipper structures that are cytotoxic when incubated 
with cells [85]. However, there were two important questions 
about these structures following the initial publication. The 
first was if the 11-mer structure was consistent with the full-
length α-synuclein fibrils found in synucleinopathy patients. 
And the second focused on how the known disease-causing 
SNCA mutations impacted protein misfolding. Insights into 
the latter question were first gained from the solid-state 
NMR (ssNMR) structure of full-length α-synuclein PFFs 
reported by Tuttle et al. in 2016 (Fig. 1c) [100]. In this struc-
ture, the templating region of α-synuclein, spanning residues 

29–97, adopts a Greek key motif (four β-strands with + 3, 
− 1, − 1 topology [46]), which is flanked by a hydrophilic 
“fuzzy coat” created by the disordered N- and C-terminal 
residues of the protein. A salt bridge between residues E46 
and K80 appears to be critical for stabilizing the Greek 
key in this structure. Intriguingly, a subset of familial LBD 
patients has a heterozygous E46K mutation in SNCA, sug-
gesting that α-synuclein must adopt a distinct conformation 
from the one reported by Tuttle et al. in patients with the 
E46K mutation.

Recent advances in cryo-EM facilitated an explosion 
in the resolution of misfolded α-synuclein conformations 
(Fig. 2). With three exceptions, the cryo-EM structures of 
recombinant α-synuclein amyloids contain two symmetrical 
protofilaments that are stabilized by intramolecular electro-
static interactions [12, 42, 43, 58, 61, 76, 96, 97, 113, 114]. 
The outliers are (1) the recently reported trimer [114], (2) 
the single filament observed in the narrow H50Q fibril struc-
ture (Fig. 2c, inset), and (3) the asymmetrical H50Q wide 
fibril structure (Fig. 2c; [11]). In 2018, Li et al. resolved two 
general populations of full-length WT PFFs, termed the rod 
and twister polymorphs (Fig. 2a), which share a bent β-arch 

a PDB protein data bank ID number
b RT room temperature

Table 3  (continued)

PDBa Protein concentration Buffer conditions pH Tem-
perature 
(°C)

Shaking & sonication conditions Ref

6L4S 100 µM 50 mM Tris, 150 mM KCl 7.5 37 900 rpm (Eppendorf ThermoMixer),
1 week;
20% power sonication × 15 (1 s on/1 s 

off; JY92-IIN sonicator) on ice, 
mixed sonicated fibrils (0.5 mol%) 
with 100 µM monomer & repeat 
shaking,

1 week

[113]

6PES 300 µM 15 mM tetrabutylphosphonium 
bromide

Not specified 37 Shaking speed not specified;
2 weeks

[11]

6PEO 300 µM 15 mM tetrabutylphosphonium 
bromide

Not specified 37 Shaking speed not specified;
2 weeks

[11]

7E0F 100 µM 50 mM Phosphate buffer, 50 mM 
NaCl, 0.05%  NaN3

7 37 900 rpm (Eppendorf ThermoMixer),
1 week;
20% power sonication × 15 (1 s on/1 s 

off; JY92-IIN sonicator) on ice, 
mixed sonicated fibrils (0.5 mol%) 
with 100 µM monomer & repeat 
shaking,

1 week

[97]

6LRQ 300 µM D-PBS Not specified 37 1000 rpm (Eppendorf ThermoMixer),
5 days;
20% power sonication × 22 (1 s on/1 s 

off) on ice, mixed sonicated fibrils 
(1% v/v) with 100 µM monomer & 
repeat shaking,

5 days

[96]
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Fig. 2  Effect of familial Parkinson’s disease mutations on α-synuclein 
fibril structure. Published structures of a WT or b–e mutant 
α-synuclein fibrils made from recombinant protein. Each of the Par-
kinson’s disease-causing point mutations (E46K, H50Q, G51D, and 
A53T; mutant residue shown in red) alters the protofilament inter-
action seen in WT fibrils. a The rod polymorph WT structure (left) 
includes an inter-protofilament interface spanning residues H50-E57, 
which forms a tight hydrophobic interaction (PDB ID 6CU7, [58]). 
In contrast, the twister polymorph WT structure (right) includes an 
inter-protofilament interface comprised of residues V66-A78 (PDB 
ID 6CU8, [58]). b The E46K mutation results in a fibril structure 
that contains a solvent-filled interface that is stabilized by salt bridges 
between K45 and E57 on either end of the cavity (PDB ID 6UFR, 

[12]). c The H50Q mutation shifts the protofilament interface in 
the wide fibril structure to residues K58-E61 (PDB ID 6PES; [11]). 
H50Q wide fibrils contain two asymmetrical protofilaments, denoted 
Protofilament A and Protofilament B. The H50Q narrow fibril (inset) 
is a single protofilament with identical structure to Protofilament A 
(PDB ID 6PEO; [11]). d The G51D mutation shifts the protofila-
ment interface and inhibits β-turn formation, leading to a serpentine 
structure unique from most other reported α-synuclein conformations 
(PDB ID 7E0F; [97]). e The A53T mutation results in a protofilament 
interface spanning residues T59-K60 (PDB ID 6LRQ, [96]). How-
ever, the overall filament structure is consistent with the folding seen 
in the a WT and c H50Q structures; a Greek key motif is stabilized 
by a salt bridge between residues E46 and K80 (dashed red line)
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kernel structure (residues H50-V77) and a Greek key motif 
within each protofilament [58]. The major feature distin-
guishing these two structures is a varied protofibril inter-
face. While the rod polymorph consists of an interface in the 
preNAC region (residues H50-E47), the twister polymorph 
interface occurs in the NACore (residues V66-A78). The 
preNAC region interface has subsequently been observed in 
several additional WT α-synuclein fibril structures, includ-
ing acetylated and C-terminally truncated sequences [43, 
58, 61, 76]. Here, the formation of a steric zipper at the 
protofibril interface is driven by hydrophobic interactions 
between nonpolar amino acids [43, 58, 61, 76].

Effect of mutations and other intrinsic factors 
on α‑synuclein fibril structure

Amyloid strains are defined by unique biochemical and 
biophysical properties that manifest as distinct neuro-
pathologies, clinical phenotypes, and incubation peri-
ods. The molecular dynamics and mechanisms governing 
α-synuclein misfolding into each specific conformation, or 
strain, remains unclear, but the presence of disease-causing 
mutations has been postulated to disrupt intra- and/or inter-
molecular interactions, placing constraints on the spectrum 
of misfolded conformations α-synuclein can adopt (Fig. 2). 
For example, the E46K mutation likely disrupts the E46/K80 
salt bridge that stabilizes the Greek key motif, as discussed 
above, preventing α-synuclein misfolding into several of the 
reported amyloid structures. To date, nine mutations have 
been identified in familial LBD patients (A30G/P, E46K, 
H50Q, G51D, A53E/T/V, and T72M [3, 27, 29, 51, 55, 
62, 67, 81, 111, 112]). Each of these mutations is reported 
to alter the fibrillization rate of α-synuclein, though it is 
unknown if this occurs by altering the misfolded protein 
conformation or by altering the energy barrier required for 
α-synuclein to adopt a particular conformation. Notably, it 
is also unclear if the reported effects on fibrillization kinet-
ics alter the rate of α-synuclein prion formation, the rate of 
α-synuclein prion propagation, or both. However, altered 
aggregation kinetics alone are insufficient to determine if 
each mutation gives rise to a distinct strain. For some of the 
known familial SNCA mutations, cryo-EM has been used to 
resolve the structure of α-synuclein fibrils generated using 
recombinant mutant protein (Fig. 2), but the relevance of 
these structures compared to the fibrils found in patients 
harboring the same mutation is not known. Moreover, the 
lack of animal and cellular data pertaining to the biological 
properties associated with each mutation limits our ability to 
determine the effect of each SNCA mutation on α-synuclein 
strain behavior. In the following sections, we will discuss 
the impact of the nine known mutations on α-synuclein 
structure and kinetics based on studies using recombinant 
fibrils. However, this discussion requires the critical caveat 

that due to a lack of standardized α-synuclein strain biology 
assays and cryo-EM structures from LBD patients, these 
conclusions may not be an accurate representation of the 
effect of each mutation on α-synuclein strain biology in 
LBDs. Moreover, while mutant α-synuclein is often used to 
investigate disease pathogenesis in LBDs, it is important to 
note that around 15% of PD cases are inherited, while SNCA 
mutations are estimated to account for only ~ 2% of cases [6, 
56, 99]. Further, because familial PD cases are infrequent 
worldwide and many patients are never subject to genetic 
testing, the frequency of each α-synuclein mutation is diffi-
cult to establish. As a result of the rarity in SNCA mutations, 
we will structure our discussion by contrasting the effect 
of each mutation on α-synuclein structure with structures 
reported using WT α-synuclein fibrils.

A30G/P

While the A30P mutation was reported in 2001 [50], the 
A30G mutation was recently described in three families 
with typical parkinsonian symptoms in early 2021 [62]. The 
A30P and A30G mutations have each been identified in 3 
and 5 confirmed PD cases, respectively [62, 86]. Patients 
with the A30G/P mutations have a variable age of onset, 
ranging from 54–76 to 36–80 years of age, respectively, 
and present with resting tremor, rigidity, or bradykinesia. 
Interestingly, A30G patients are more likely to develop 
non-motor symptoms, including orthostatic hypotension, 
urinary incontinence, and rapid eye movement behavioral 
disorder, as well as psychiatric symptoms, including hal-
lucinations, depression, and cognitive decline. Structurally, 
both mutations decrease the α-helical propensity of soluble 
α-synuclein [62], but exert differing effects on fibrilliza-
tion. The replacement of an alanine with a glycine increases 
protein flexibility, resulting in fibrillization kinetics that are 
similar to or faster than WT α-synuclein when monitored 
by thioflavin T (ThT) incorporation. Alternatively, the pro-
line substitution inserts a kink or bend in the amino acid 
sequence, significantly decreasing the rate of fibrillization 
[62, 110]. Macroscopically, A30P fibrils are more densely 
packed than WT α-synuclein [77], suggesting the fibrils may 
be more resistant to fragmentation, which would decrease 
the efficiency of additional templating and fibrillization. 
The exact effect of the A30G/P mutations on α-synuclein 
structure are unknown as there are currently no published 
structures containing these mutations. Notably, the location 
of these two mutations outside of the preNAC region makes 
them unique with regard to the majority of LBD mutations. 
While many of the other mutations disrupt the reported 
protofilament interfaces, A30 is often located outside of the 
templating region in α-synuclein amyloids, suggesting the 
effect it has on fibril structure is distinct from the effects of 
other known mutations.
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E46K

The E46K mutation is the second-most common SNCA 
mutation, associated with 10 confirmed cases of PD. Patients 
harboring this mutation typically have an age of onset 
between 50 and 65 years of age and present with severe 
parkinsonian symptoms and dementia [86, 112]. In addi-
tion, some patients also progress to experience visual hal-
lucinations. The first reported structure containing the E46K 
mutation was resolved from mutant PFFs by Boyer et al. 
in 2020 (Fig. 2b) [12]. In this structure, residues K45-E57 
form a solvent-filled protofilament interface that is stabi-
lized by two electrostatic interactions between residues K45 
and E57 on each end of the interface between the protofila-
ments, respectively. A positively charged lysine and histidine 
residue from each of the two protofilaments projects into 
the resulting cleft, which contrasts with the highly hydro-
phobic H50-E57 interface commonly observed in WT 
α-synuclein structures (Figs. 2a, b; [42, 58, 61, 76]). Using 
N-terminally acetylated E46K PFFs, Zhao et al. reported 
a structure containing a hydrophobic protofilament inter-
face between residues V74-Q79 (Fig. 3) [113]. The shifted 
interface increases the flexibility of the N-terminal region 
of the fibril core, likely contributing to a looser fibril pack-
ing, which resulted in a lower fibril stability when compared 
to WT fibrils [113]. This reduced stability may lead to an 

increase in fibril fragmentation, contributing to the observed 
increase in aggregation rate in ThT assays [113]. While the 
E46K structures reported by Boyer et al. and Zhao et al. 
exhibit structural differences, both fibrils maintain either an 
increased rate of aggregation or an enhanced cytotoxicity, 
respectively, when compared to WT PFFs. However, more 
data are needed to determine if these changes are the direct 
result of the mutation or if they are due to differences in 
experimental conditions.

Notably, aside from the A53V mutation [111], familial 
SNCA patients are heterozygous for mutations, meaning 
that mutant protein is co-expressed with WT α-synuclein. 
Investigating the ability of E46K PFFs to template using 
WT recombinant protein and vice versa, Long et al. reported 
that WT α-synuclein adopts the E46K conformation when 
seeded with E46K PFFs, despite the mismatch in the amino 
acid sequence [64]. However, WT fibrils could not cross-
seed E46K monomer, likely due to disruption of the salt 
bridge formed between residues E46 and K80 in the WT 
fibril structure [61, 92, 100]. The change from a glutamic 
acid to a lysine causes a charge–charge repulsion with K80, 
destabilizing the β-arch observed in most α-synuclein struc-
tures, resulting in what is likely unidirectional cross-seeding 
between WT and E46K α-synuclein. These findings are con-
sistent with transgenic mouse studies showing that WT PFFs 
(containing residues 21–140) injected into the hippocampus 

Fig. 3  Effect of acetylation on 
α-synuclein fibril structure. 
N-terminal acetylation appears 
to have little effect on a WT 
α-synuclein fibril structure, 
but b substantially impacts 
E46K fibrils. a Unmodified 
WT α-synuclein (left; PDB ID 
6CU7, [58]) and N-terminally 
acetylated α-synuclein (right; 
PDB ID 6A6B, [61]) maintain 
the same H50-E57 proto-
filament interface, along with 
similarities in the β-folds. b In 
contrast, E46K fibril structure 
differs substantially when 
N-terminally acetylated E46K 
protein is used to generate 
fibrils (unmodified on left, PDB 
ID 6UFR, [12]; acetylated on 
right PDB ID 6L4S, [113])
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of TgM47 mice, which express human E46K α-synuclein, 
induce minimal α-synuclein pathology 4 months post injec-
tion [89].

H50Q

The H50Q mutation is rare (3 confirmed cases), and results 
in a clinical presentation of tremor followed by motor 
decline, speech problems, and cognitive impairment around 
60 years of age [3, 82, 86]. Boyer et al. reported two H50Q 
polymorphs: a narrow fibril containing one protofilament 
and a wide fibril containing two asymmetrical protofila-
ments. In the wide fibril (Fig. 2c), protofilament A contains a 
longer templating region than protofilament B with residues 
K45 and Q50 slightly differing in orientation [11]. Overall, 
each protofilament is similar to the WT fibril conformations, 
but the H50Q fibrils have a shorter steric zipper protofila-
ment interface (residues K58–E61 versus H50-E57 in the 
WT fibrils) involving residues outside of the preNAC (resi-
dues H/Q50-E57) and NACore (residues V66-A78) regions 
[11, 58]. In several WT α-synuclein fibril structures, residue 
H50 forms a salt bridge with either residue E57 or E58, 
which stabilizes the hydrophobic steric zipper. The pres-
ence of the H50Q mutation disrupts this interaction, which 
destabilizes the hydrophobic interface discussed above [58] 
and shifts the residues involved in intramolecular bonding 
at the protofilament interface [11]. As a result, residues 
H50-E57 form a straight β-strand segment with minimal 
inter-filament interactions in the wide H50Q fibril. More-
over, Q50 can now form an electrostatic interaction with 
K45 on the same strand, creating a slight bend in the fibril 
[11]. The conformation is also stabilized by an internal salt 
bridge between K58 and E61. Cell-free fibrillization assays 
using H50Q α-synuclein indicate that the mutation results 
in faster fibrillization kinetics compared to the WT protein 
[11, 88]. In addition, compared to sonicated WT PFFs, 
sonicated H50Q PFFs induced more protein aggregation in 
α-syn140*A53T-YFP cells, as well as more cytotoxicity in 
differentiated PC12 cells as measured by MTT assay [11]. 
However, it is unclear if these findings are due to differences 
in protein conformation or a difference in the number of free 
ends available for self-templating following sonication.

G51D

The G51D mutation has been identified in 8 cases of PD 
[86]. Patients with the G51D mutation have a unique pres-
entation with an early age of onset (typically in their 30 s) 
and a rapidly progressive phenotype with only a few years 
between patient diagnosis and death [48, 55]. Affected 
patients exhibit typical parkinsonism that quickly pro-
gresses, resulting in loss of autonomy, as well as psychiatric 
symptoms including anxiety and hallucinations. The G51D 

mutation substitutes a larger hydrophilic residue for the nor-
mal hydrogen, which would disrupt the hydrophobic proto-
filament interface. Sun et al. recently reported a structure 
of N-terminal acetylated G51D α-synuclein and discovered 
an extended serpentine fold that is unique from previously 
determined fibril structures (Fig. 2d) [97]. This mutation 
results in the formation of a β-hairpin that shifts the proto-
filament interface to residues V74-Q79 (H50-E57 in WT) 
[97]. Like E46K fibrils, G51D fibrils exhibit a right-handed 
helical twist. However, while the K45-E57 salt bridge is 
enabled by a β-turn that includes residue G51 in the E46K 
fibrils, the G51D mutation inhibits the β-turn from forming, 
leaving the N-terminal portion of the fibril flexible [97]. As 
a result, G51D α-synuclein cannot adopt either the WT or 
E46K structures (Fig. 2). However, G51D fibrils are capa-
ble of cross-seeding WT α-synuclein  (WT51cs) [97]. This 
finding, in combination with the E46K cross-seeding stud-
ies, suggests that WT α-synuclein can misfold into a large 
number of possible conformations, but the presence of spe-
cific mutations, such as E46K and G51D, constrains protein 
misfolding to a subset of the total possible conformations.

Biochemical studies have shown that recombinant G51D 
α-synuclein exhibits a decreased association with phospho-
lipid membranes and slower fibrillization kinetics compared 
to WT protein [27, 88, 97]. Consistent with this observation, 
when Sun et al. compared the effect of sonication on WT 
versus G51D fibrils, they observed that the G51D fibrils 
fragmented into smaller species. However, when the soni-
cated fibrils were incubated with primary neuronal cultures, 
the G51D PFFs induced more α-synuclein aggregation than 
the WT fibrils [97]. These cellular data are difficult to inter-
pret given that fibril fragmentation via sonication increases 
the number of free ends available for templating. As a result, 
the differences in aggregate formation may be a reflection 
of the number of exposed surfaces available to catalyze 
α-synuclein misfolding rather than differences in misfold-
ing kinetics.

A53E/T/V

While there are three known point mutations at residue 
A53, the A53T mutation is the most commonly reported of 
all SNCA mutations, having been identified in ~ 150 cases 
around the world [86]. Of the reported A53T cases, about 
half have been genetically confirmed while the others are 
genetically unconfirmed familial cases [86]. The A53E 
and A53V mutations have been linked to 7 and 2 cases 
of Parkinson’s disease, respectively [86, 111]. In addition 
to differences in mutation prevalence, the reported onset 
of clinical disease also differs between the three muta-
tions. The earliest reported age of onset is in patients with 
the A53E mutation (~ 34 years old), followed by A53T 
(~ 47 years old) and then A53V (~ 56 years old) [67, 80, 
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81, 111]. These mutations also result in varied clinical 
presentations. A53E patients exhibit severe bradykinesia 
but no cognitive decline whereas A53T patients develop 
autonomic dysfunction and dementia. These are both in 
contrast to A53V patients who typically suffer from trem-
ors, hallucinations, and cognitive decline, similar to the 
presentation of DLB [49, 69]. A53 is in the center of the 
protofilament interface in WT α-synuclein PFFs, mean-
ing mutations to this residue are likely to disrupt or shift 
the intermolecular interactions between the fibril strands. 
Consistent with this hypothesis, Sun et  al. reported a 
cryo-EM structure of A53T α-synuclein PFFs showing 
that the neutral threonine disrupts the hydrophobic zip-
per, resulting in a shorter protofilament interface (residues 
T59-K60) that makes the fibril less stable (Fig. 2e) [96]. 
This is compounded by the loss of the H50/E57 salt bridge 
between the two filaments. Biochemically, A53T fibrils 
exhibit an enhanced fragmentation rate, increased aggre-
gation propensity (measured by ThT incorporation), and 
greater cytotoxicity in SH-SY5Y cells compared to WT 
α-synuclein, which may be due to the observed decrease in 
structural stability between the WT and mutant conforma-
tions [73, 74, 96]. In contrast, the A53E mutation reduces 
α-synuclein fibrillization compared to WT, resulting in 
the formation of oligomeric protofibrils, instead [35, 54, 
87]. While the mechanism by which this mutation leads to 
disease remains unclear, the mutation has been shown to 
cause a number of cellular pathologies, including fragmen-
tation of the Golgi body. Finally, Mohite et al. reported 
that A53V fibrils exhibit decreased membrane interactions 
and enhanced aggregation kinetics relative to WT protein 
[73]. While there are currently no cryo-EM structures of 
the A53E or A53V mutations available, the notable struc-
tural differences between WT and A53T fibrils (Fig. 2) 
suggest that it may be difficult to translate discoveries 
made using A53X model systems to WT α-synuclein.

T72M

Most recently, the T72M point mutation was discovered in 
two Turkish families [29]. These patients presented with 
variability in the occurrence of non-motor clinical features 
and an age of onset ranging from 39 to 57 years, but both 
families displayed cognitive decline [29]. Disease onset is 
consistent with what is observed in patients harboring the 
A53E and G51D mutations, however, these mutations lie 
within the preNAC region while T72M is in the NACore 
domain. While it is unclear how the substitution of a small 
hydrophilic amino acid for a large hydrophobic residue 
impacts protein misfolding, fibrillization studies using ThT 
incorporation showed that T72M α-synuclein exhibits accel-
erated aggregation kinetics compared to WT protein [29].

Effect of post‑translational modifications 
on α‑synuclein structure

In addition to the mutations discussed above, α-synuclein 
can undergo several post-translational modifications 
(PTMs), including phosphorylation, acetylation, nitra-
tion, ubiquitination, O-GlcNAcylation, and truncation [2, 
57]. It is currently unclear what specific role PTMs play 
in disease pathogenesis, or even when the modifications 
occur (i.e., before or after fibril formation). As a result, it 
is difficult to parse out how each PTM may contribute to 
the varied clinical presentations seen across synucleinopa-
thy patients. Efforts to understand the effect of PTMs on 
α-synuclein strain formation include the use of cryo-EM 
to determine structural differences between fibrils formed 
using WT versus modified recombinant protein. For exam-
ple, phosphorylation of Y39, which has been observed in 
PD patients [15], results in either a twisted dimer or trimer 
structure, both of which contain the largest reported core 
region for any α-synuclein fibril, spanning residues 1–100 
[114]. Importantly, α-synuclein is N-terminally acetylated 
under physiological conditions [2]. However, N-terminal 
acetylation of full-length α-synuclein has varying effects 
on fibril structure that appear to be dependent upon whether 
the PTM is present on WT or mutant α-synuclein, or if other 
PTMs are present. Cryo-EM studies suggest the structure 
of WT α-synuclein is largely unaltered by the presence 
of N-terminal acetylation, which is likely due to the loca-
tion of the acetyl group outside of the observed templat-
ing region (Fig. 3a) [76]. In contrast to WT α-synuclein, 
N-terminal acetylation is associated with multiple changes to 
the E46K α-synuclein structure, including a shorter templat-
ing region and a shift in the protofilament interface of the 
fibrils (Fig. 3b). Consequently, the structures derived from 
un-acetylated mutant α-synuclein may be less likely to exist 
in human patients carrying the same mutation. While the 
location of the PTM may contribute to the varied impacts on 
α-synuclein structure reported to date, it is also possible that 
the conformations are dependent upon small differences in 
the fibrilization conditions (discussed below). As a result, we 
cannot untangle the effects of PTM and fibrillization condi-
tions on fibril structure at this time. However, it is clear that 
additional studies are needed to fully determine how PTMs 
influence α-synuclein structure.

Effect of fibrillization environment on strain 
formation

Protein tertiary structure is dependent upon a variety of 
factors, including pH, temperature, and solvent. Recom-
binant α-synuclein is typically fibrillized at physiologi-
cal temperature (37 °C) and pH (~ 7.5), but a variety of 
buffer conditions are used to generate the fibril structures 
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discussed above (Table 3). Given the large number of 
variables that can be altered under each experimental 
condition [41, 70, 71, 90], it is difficult to determine 
the exact effect of each variable on α-synuclein fibril 
formation. However, recent work by Lau et al. provides 
critical insight into the effect buffer conditions have on 
α-synuclein strain formation [53]. Recombinant PFFs 
generated in buffer containing either salt (S) or no salt 
(NS) yielded two distinct fibril species, each with unique 
biochemical properties. Inoculation studies comparing 
transmission of the two fibrils to the  TgM83+/- mouse 
model, which expresses human α-synuclein with the 
A53T mutation [36], resulted in distinct incubation peri-
ods, clinical presentations, and pathological lesion pro-
files in the brain. Moreover, these properties were main-
tained upon serial passaging in the mice, consistent with 
the prion strain hypothesis. These findings suggest that 
future studies investigating the effect of specific salts or 
metals in fibrillization buffers may shed important light 
on key factors in the cellular environment that impact 
α-synuclein strain formation.

Redefining a strain

Due to a lack of structural data, prion strains have histori-
cally been defined operationally as isolates that consistently 
transmit neurological disease to a host, faithfully maintain-
ing specific characteristics while doing so (i.e., incubation 
period, neuropathological lesion profile, biochemical stabil-
ity, etc. [8]). However, recent advances in cryo-EM have 
enabled structural biologists to resolve the misfolded protein 
structures responsible for prion diseases. This renaissance 
offers the field a unique opportunity to redefine strains based 
on both protein structure and the resulting biological conse-
quences in a host. An important question to address through 
this work is what degree of structural variability is required 
to induce distinct disease phenotypes. As discussed above, 
mutations, PTMs, and fibrillization environment all impact 
protein misfolding, however, there are multiple conserved 
structural elements across the reported α-synuclein struc-
tures (Table 2, Fig. 4). For example, α-synuclein PFF struc-
tures containing the H50Q and A53T mutations contain one 
identical protofilament (Fig. 4a), though they have differing 
fibril interfaces that result in a slightly skewed orientation of 
the second protofilament (Figs. 2c, e). The overlap in clinical 

Fig. 4  Point mutations con-
tribute to structural variability 
in the misfolded α-synuclein 
conformation. Comparison 
of single protofilaments from 
H50Q, A53T, E46K, and G51D 
recombinant α-synuclein fibril 
structures shows structural 
similarity between the a H50Q 
(PDB ID 6PES, [11]) and 
A53T fibrils (PDB ID 6LRQ, 
[96]). The E46/K80 salt bridge 
is shown via dotted red lines. 
These conformations are 
distinct from the b N-terminally 
acetylated E46K (PDB ID 
6L4S, [113]) and G51D fibril 
structures (PDB ID 7E0F, [97]). 
Mutated residues are high-
lighted in red
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presentation in patients with the two mutations raises the 
possibility that the observed structural homology may con-
verge on a particular set of disease characteristics. In com-
parison, E46K fibrils have a drastically different protein con-
formation from H50Q and A53T fibrils, consistent with the 
varied clinical presentation seen in patients with the E46K 
mutation (Fig. 2). Similarly, the serpentine structures from 
N-terminally acetylated E46K and G51D fibrils share sev-
eral features, including protofilament interface (V74-Q79; 
Fig. 4b). As a result of the disrupted E46/K80 salt bridge, 
the E46K and G51D structures exhibit a shift in protofila-
ment interface compared to the H50Q and A53T fibril struc-
tures. However, despite these similarities, the G51D muta-
tion inhibits the formation of the β-turn seen in the E46K 
fibril structure. All together, these structures highlight a gap 
in understanding how many distinct α-synuclein strains exist 
and what degree of structural variation is required for two 
conformations to give rise to unique clinical phenotypes. 
For example, it is possible that the conservation of key cri-
teria across structures results in similar clinical phenotypes. 
However, a major caveat to this interpretation is that it is 
unknown if any of these structural features are present in 
α-synuclein fibrils isolated from PD patients with or without 
SNCA mutations. Without a PD patient-derived structure of 
α-synuclein, the ability of the reported cryo-EM conforma-
tions to accurately model or predict α-synuclein strain biol-
ogy in LBD patients remains unknown.

Structural differences 
between patient‑derived fibrils and PFFs

In 2020, Schweighauser et al. reported the first patient-
derived α-synuclein fibril structures from MSA patient sam-
ples [92]. Unlike the symmetry found in most reported PFF 
structures, this work identified two different asymmetrical 
filaments with a more extensive fibril interface, differenti-
ated as Type I and Type II fibrils (Fig. 5). Both structures 
consist of two distinct protofilaments around a cavity con-
taining a non-proteinaceous, negatively charged molecule, 
with the positively charged K43, K45, and H50 residues sta-
bilizing the interaction [92]. Notably, while a non-protein 
density is observed in a handful of PFF structures [42, 43], it 
is unclear if it is the same cofactor that is present in the cen-
tral cavity of the MSA structures. Additionally, MSA proto-
filaments adopt extended folds within the N-terminal region 
that are not observed in many of the PFF structures (see 
Templating Region in Table 2). Altogether, the structural 
differences between fibrils isolated from patient samples 
versus generated using recombinant protein add to growing 
concerns about the ability of PFFs to successfully replicate 
α-synuclein strain biology in human disease.

In an attempt to generate PFFs that replicate the 
α-synuclein structures in human patient samples, Shahnawaz 
et al. used real-time quaking induced conversion (RT-QuIC) 
to amplify α-synuclein oligomers from the cerebrospinal 
fluid of MSA and PD patients [93]. The kinetics of misfold-
ing differed between the two sets of samples, and analysis by 
cryo-electron tomography and circular dichroism indicated 
that the structural differences in the resulting α-synuclein 
fibrils could be used to differentiate PD from MSA patient 
samples [93]. However, in 2021, Lövestam et al. used the 
same amplification methods to generate MSA-derived PFFs 
and resolved the fibril structures via cryo-EM [65]. These 
reactions yielded multiple filament structures that differed 
from the original MSA samples in several ways, including 
the absence of a non-protein density between two symmetri-
cal protofilaments with altered protofibril interfaces [65]. 
Additionally, others have used protein misfolding cyclic 
amplification (PMCA) to amplify misfolded α-synuclein 
from PD- and MSA patient brain extracts and found that the 
in vitro generated α-synuclein structures were more similar 
to reported PFFs than to the reported brain-derived patient 
structures [33, 95]. These findings indicate that the pub-
lished reaction conditions for RT-QuIC and PMCA cannot 
be used to faithfully propagate the α-synuclein structures 
in MSA.

Clinical consequences of α‑synuclein 
structural heterogeneity

While recent advances in cryo-EM have revolutionized our 
ability to understand misfolded protein structure, it is impor-
tant to recognize that these datasets represent a fixed time 
point in the disease process and are limited in what they can 
teach the field about the process of protein misfolding. For 
example, to understand the effect of SNCA point mutations 
on fibril structure, mutant protein alone is typically used 
to form PFFs. However, as noted above, patients are usu-
ally heterozygous for these mutations, meaning they express 
both WT and mutant α-synuclein. By forming PFFs in the 
absence of both WT and mutant protein, there are a num-
ber of questions left unanswered about how the presence 
of WT protein impacts the kinetics of mutant α-synuclein 
misfolding, or even if WT α-synuclein is incorporated into 
the pathogenic fibrils found in LBs. Additionally, there is 
often little biochemical or biological data reported along 
with a misfolded α-synuclein structure. Currently, the only 
complete dataset available for an α-synuclein strain, includ-
ing fibril structure, biochemical properties, biological activ-
ity in cells and mice, etc., is for MSA (Fig. 6) [53, 83, 92, 
105, 107, 108]. The lack of in vitro and in vivo correlations 
with PFF structures impedes our ability to draw conclusions 
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about the biological and clinical consequences of variation 
in fibril structure.

Notably, the methods used to determine misfolded pro-
tein conformations are unable to capture the diversity of 
structures that exist in a sample. Class averaging is used 
to improve the signal-to-noise ratio in the images that are 
collected by cryo-EM, and individual images are classified 
based on similarities in viewing direction, register, and rota-
tional orientation [44, 91]. This classification provides an 
average that can then be used to create a final reconstructed 
3D tomographic image. As a result, using class averaging 
to reconstruct a single α-synuclein structure may lead to an 
oversimplification of disease by selecting for a dominant 
protein conformation while also disregarding the presence 
of PTMs. A growing body of research in the prion field 
indicates that prion strains are made up of a spectrum, or 
“cloud,” of many conformations that may evolve throughout 
the self-templating process, with one conformation emerging 

as the predominant structure in disease [20, 59]. This is seen 
in viral quasi-species, where a population of viruses with 
an array of genetic mutant spectra can increase or decrease 
in frequency during the replication process [23–25]. It is, 
therefore, critical to understand the clinical implications of 
the cloud hypothesis for studying and treating disease.

As new model systems and assays are developed to study 
α-synuclein strain biology, investigators need to consider 
how the conformational cloud may adapt within the model 
system(s) they are using. Introducing the cloud to a new 
host, as is done in animal and cellular bioassays, in addi-
tion to in vitro conversion assays, may select for one or two 
conformations within the cloud of α-synuclein structures 
that form a strain, as shown in Fig. 7. This complicates 
therapeutic development for several reasons. First, the fac-
tors responsible for in vivo strain maintenance are not yet 
known, and if the target assay fails to incorporate all compo-
nents necessary, changes in the selective pressure of the host 

Fig. 5  Α-synuclein fibrils isolated from multiple system atrophy 
patient samples are structurally distinct from recombinant fibril 
structures. a The templating region in wild-type (WT)  α-synuclein 
fibrils spans residues 38–97 (PDB ID 6CU7, [58]). Two symmetri-
cal protofilaments form a fibril interface between residues 50–57 
(pink). b–d Α-synuclein fibrils isolated from multiple system atrophy 
(MSA) patient samples contain two asymmetrical protofilaments with 
charged residues (red) at the protofibril interface, which interact with 

a non-proteinaceous molecule [92]. The asymmetrical protofilaments 
contain one filament with a longer templating region (residues 14–94) 
and one with a shorter templating region [either residues b 21–99 or 
(c, d) 36–99]. The N terminus of the MSA fibrils (light blue) adopts 
an extended fold that is not present in the a WT structure. PDB IDs 
for MSA fibrils: b 6XYO; c 6XYP; d 6XYQ, all reported in [92]. Salt 
bridge between E46 and K80 shown via dashed red lines
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Fig. 6  Structural, biochemical, and biological criteria for defining the 
multiple system atrophy α-synuclein strain. Currently, no standard-
ized criteria exist for defining individual α-synuclein strains across 
research laboratories. To better support synucleinopathy research 
across groups, we propose using a standard set of assays to define 
strains, including a structure, b biochemistry, c in vitro propagation 
using an array of substrates, d animal bioassay, and e neuropatho-
logical inclusions. a MSA TypeII-1 fibril structure (PDB ID 6XYP, 
[92]). b Degradation profiles for MSA α-synuclein from patient sam-
ples (left) or mouse-passaged patient samples (right) following guani-
dine denaturation (top) and proteinase K digestion (bottom). Primary 
antibody, EP1536Y. (Data published in [106].) c MSA propagation 

in HEK293T cells expressing various α-synuclein-YFP substrates 
(data published in [108]). WT, wild-type; K, E46K; T, A53T; PT, 
A30P and A53T; KT, E46K and A53T; 1–95, α-synuclein truncated 
at residue 95 with the A53T mutation; 1–97, α-synuclein truncated 
at residue 97 with the A53T mutation. d Kaplan–Meier plot from 
 TgM83+/- mice inoculated with either control or MSA patient sam-
ples (data published in [107]). e Α-synuclein neuropathology in a 
terminal  TgM83+/- mouse inoculated with an MSA patient sample. 
Phosphorylated α-synuclein (pSyn; green), glial fibrillary acidic pro-
tein (GFAP; red), and nuclei (DAPI; blue). Scale bar, 200 microns. 
Data published in [107]
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will result in the emergence of a different dominant strain. 
Moreover, these changes may be assay-dependent, meaning 
that one structure will emerge in a cell-free or cellular assay 
and a different structure from the same conformational cloud 
will emerge in a mouse model (Fig. 7a). As a result, strain 
adaptation will impact the ability of a screening assay to 
predict in vivo compound efficacy, as well as the translat-
ability of a compound from animal studies into the clinic. 
Second, changes in selective pressures on a cloud of con-
formations can result in drug resistance. A therapeutic that 
blocks the conversion of the dominant strain in a mixture can 
allow minor conformations to emerge, which will eventu-
ally cause clinical disease (Fig. 7b). This phenomenon has 
been observed in PrP prion diseases. Treatment with either 
swainsonine or the 2-aminothiazole, IND24 (discussed more 
below), resulted in the emergence of drug-resistant  PrPSc 
strains, both of which reverted to a susceptible phenotype 
after drug removal [9, 59, 60].

Finally, redefining strains based on the protein 
conformation(s) that give rise to a specific disease pheno-
type is needed to successfully develop strain-specific thera-
peutics for synucleinopathy patients. The ramifications of 
prion strain variability previously thwarted efforts to develop 
therapeutics to halt  PrPSc propagation in patients with 
Creutzfeldt–Jakob disease (CJD). A cell model that propa-
gates the mouse-adapted scrapie PrP prion strain RML (iso-
lated at Rocky Mountain Laboratories) was used to screen 
for small molecule inhibitors of  PrPSc propagation [66]. This 
screen resulted in the identification of IND24, which doubles 
the lifespan of mice inoculated with RML prions. However, 
when IND24 was used to treat mice inoculated with CJD pri-
ons, the compound had no effect on survival [9, 34], under-
scoring the importance of incorporating strain-specificity in 
therapeutic development.

Conclusion

The widespread use of PFFs in synucleinopathy research 
has allowed investigators to interrogate the effect of SNCA 
mutations on α-synuclein structure and aggregation kinet-
ics. However, the dearth of studies correlating in vitro and 
in vivo assays with protein structures limits our ability to 
draw connections between α-synuclein conformations and 
disease phenotypes. The need to establish this link is under-
scored by the conformational differences between PFFs 
and patient-derived fibrils; it remains unclear how predic-
tive PFFs are of the α-synuclein biology that contributes 
to human disease. It is, therefore, imperative that structural 
studies be combined with a robust biological characteriza-
tion to determine which reported structural components are 
clinically relevant.

Fig. 7  Consequences of the cloud hypothesis for studying and treat-
ing α-synuclein strains. The cloud hypothesis posits that a strain is 
made up of a mixture of misfolded protein conformations, with one 
particular conformation emerging as the dominant structure in the 
strain. a A single patient sample (hypothetical Patient A) may contain 
multiple conformations, shown as strain 1 (orange squares), strain 2 
(green triangles), and strain 3 (purple circles), but one of these con-
formations, strain 1, emerges as the predominant conformation in dis-
ease. However, when the environmental conditions that contributed to 
strain formation and maintenance are altered, for example, the patient 
sample is tested in an array of cell-free, in vitro, and in vivo assays, 
adaptation occurs and other sub-strains emerge as the dominant 
strain. b Under these conditions, high throughput screening of small 
molecules in a cell-free or in vitro assay will result in the identifica-
tion of compounds that are ineffective in an in vivo model of disease. 
For example, when mice are inoculated with brain homogenate pre-
pared from Patient A samples, a compound for strain 1 will suppress 
strain 1 propagation, but that will also contribute to the emergence of 
strains 2 and 3 in the mice. Under these conditions, the animals will 
still develop disease
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